Forensic Engineers and Consultants

Tag Archive: chemical engineer

  1. Warren Welcomes Fire Protection Engineer Amy Anderson, P.E.

    Leave a Comment

    Please join us in welcoming Fire Protection Engineer Amy Anderson, P.E., to the WARREN family! Amy has over 20 years of property loss prevention engineering and experience, specializing in fire protection. Amy graduated from Clemson University with a degree in Chemical Engineering and is a licensed Professional Engineer in Fire Protection.

    Amy’s Expertise Includes: (more…)

  2. Interpreting Industrial Incident Data – Lesson Learned

    Leave a Comment

    This is a case study about an incident I investigated involving a major upset in a distillation column.  This blog builds on the previous blogs about the Distributed Control System, DCS – Data is the Key.

    Distillation is a method of separating mixtures of compounds with differing boiling points.  Uncle Bill with his still on the hill separates ethanol, that boils at 173°F, from water that boils at 212°F.  If the mixture is heated to above 173°F, but below 212°F, the ethanol will boil, the vapor will travel up out of the unit and then can be condensed and served over ice with an olive…   Any mixture of two or more chemicals with different boiling points can be separated in this way.  The distillation (more…)

  3. What Does a Recovery Boiler Recover? – Quite a bit, actually!

    Leave a Comment

    The Kraft paper process was invented in 1879 and produces a stronger finished product that other paper manufacturing methods. One of the waste streams is known as black liquor and is a mixture of solids and water.  It contains lignin, hemicelluloses and chemicals used in the pulping process. The original process had no use for this harmful waste stream and it was dumped into nearby waterways, to their detriment!!!  Mr. G.H. Tomlinson invented the recovery boiler in the early 1930’s.  This development made the Kraft process the manufacturing method of choice, as explained below. (more…)

  4. P&ID’s, If You Please – Piping and Instrumentation Diagrams Explained

    Leave a Comment

    When investigating an industrial incident, one piece of information I always ask for is the relevant P&ID’s for the process.  P&ID stands for Piping and Instrumentation Diagram and is defined as “A schematic diagram of the relationship between instruments, controllers, piping, and system equipment.” A set of P&ID’s for an entire facility allows you to trace the entire manufacturing process from raw material unloading to finished product loadout, including utilities like steam, water, fuel, and air. That’s great information to have, but isn’t especially useful (more…)

  5. Ammonia – The Good, The Bad, The Smelly… Part One

    Leave a Comment

    Ammonia is a compound consisting of one nitrogen atom and three hydrogen atoms and is denoted by the formula NH3. Its boiling point is -28°F at atmospheric pressure, so unless it is under pressure, it is gaseous at room temperatures. Therefore, pure ammonia is typically stored under pressure in a liquid form. Household ammonia is only 5-10% NH3, the remaining 90-95% is water. Ammonia is extremely soluble in water. It is often depicted  like this: (more…)

  6. OSHA’s Process Safety Management – Is This Process Covered?

    Leave a Comment

    In February of 1992, the OSHA Process Safety Management (PSM) standard was issued. The official title is: ‘Process Safety Management of Highly Hazardous Chemicals.’ As its title implies, not every facility is covered by this rigorous standard. A process must contain highly hazardous, as defined by OSHA, chemicals above a certain weight threshold, again defined by OSHA. Notice that this is a process by process determination, so there could be certain processes at a manufacturing facility that are not covered by this standard situated beside other processes that are.
    (more…)

  7. Boiler Blowdown – It’s Not a Dance Move

    Leave a Comment

    When thinking about the safe operation of boilers (and don’t we all?), several systems can readily be named; flame control, fuel/air ratio; steam pressure control, levels in the vessel, etc. What about the water? It seems so passive, as long as there is enough for level control, what’s the big deal? Well, it turns out, that as the steam produced by a boiler is used in the process, the condensate from that steam is returned to the boiler as feedwater. However, since 100% of the condensate is not returned, whatever solids had been in that water before it evaporated to form steam are left in the remaining water.  Fresh feedwater is added to maintain levels, but even fresh water contains some dissolved solids. So over time, the water in the boiler system gets saturated with all sorts of dissolved minerals.
    (more…)

  8. How a Central Indian Town Changed the United States Code of Federal Regulations

    Leave a Comment

    On December 3, 1984, at a pesticide ingredient manufacturing facility owned by Union Carbide, a leak occurred in the Methyl Isocyanate (MIC) plant. Due to the toxic nature of the gases released and the plant’s proximity to local residences, the death toll was in the thousands; both plant workers and nearby residents.  The first recorded public meeting in response to this incident was on December 9th, in Institute, WV, the site of Union Carbide’s only US MIC production unit.  Full disclosure: my father was a research & development chemist for Union Carbide and Institute is about 10 miles down the Kanawha River from my hometown of Charleston, WV. (more…)

  9. Commercial Gas-Fired Cookers Can Do More Than Burn

    Leave a Comment

    The first hazard that comes to mind when thinking about large scale ovens and steam kettles is burning or scalding injury. Carbon monoxide poisoning is just as dangerous but less understood, so oftentimes proper prevention methods are not followed. In the United States, this results in over 20,000 emergency room visits and over 400 deaths a year. Before we get to the case study and poisoning prevention methods, we need to know what CO is, where it comes from, and why it is poisonous. (more…)

Type ofLoss

Not sure what you're looking for?
Browse All

Select Loss Category