Forensic Engineers and Consultants

Tag Archive: safety engineering

  1. Conveyor Backstops: Sometimes One Isn’t Enough, Part 2

    Leave a Comment

    This is the second in a two-part blog series about conveying equipment that severely injured a worker at a mine. In case you missed it, click here to read Part 1 where I describe the incident and the mining equipment. In this part, I will discuss my engineering analysis of the incident and the machinery involved and share the conclusions I reached.

    The injured miner was a front-end loader operator. He was not a maintenance worker. He simply responded to a radio request for help with the conveyor. Power to the electric conveyor motors was locked out, but none of the maintenance workers did anything to lock out or block the hazardous gravitational potential energy in the heavy load of stone on the belt. (more…)

  2. Conveyor Backstops: Sometimes One Isn’t Enough, Part 1

    Leave a Comment

    This is the first of a two-part blog series describing an incident involving conveying machinery that seriously injured a miner. Part 1 describes the machinery and the incident. In Part 2 I will summarize my engineering analysis of the incident and share the conclusions I reached.

    A loaded, inclined conveyor belt may contain hazardous levels of energy due to gravity. To protect workers, anti-reverse devices called backstops are installed on inclined conveyors to prevent unexpected downhill movement. The Conveyor Equipment Manufacturer’s Association (CEMA) defines a backstop as: (more…)

  3. The Role of Interlocking Guards in Injury Prevention

    Leave a Comment

    In the three-part series on the CE mark, we scratched the surface of some of the requirements an equipment manufacturer must meet in order to earn this designation. Part three of the series dealt with some of the requirements for the design of a guard.  One of the items for consideration with the design of a guard is the frequency that someone will need to access the area protected by the guard.  If access is needed on a routine basis, often defined as more than once per shift, the guard needs to be designed to be movable instead of fixed.  Movable is defined as able to be opened without the use of tools.  Otherwise the frustration and time requirements of obtaining tools and removing a fixed guard will often lead to the guard being discarded. (more…)

  4. What’s Behind That CE Mark Part Three, Machine Guard Requirements

    Leave a Comment

    In the first blog in this series, we discussed the story behind the CE mark, the Machinery Directive, and the associated requirements regarding the design, production, and sale of machinery bearing the mark. The second blog discussed a cornerstone of safer machine design, the risk assessment. This installment will discuss another crucial piece of the safety puzzle, machine guard design. (more…)

  5. The CE Mark and What Should It Mean to You? Part Two

    Leave a Comment

    In the previous blog (Part One) we discussed the backstory behind the two stylized letters CE and what it means to the design of machinery bearing the mark.   We outlined some of the requirements of the “Machinery Directive” (MD) which include what are known as “Essential Health and Safety Requirements.” The Essential Health and Safety Requirements incorporate an iterative risk reduction process during design that takes into account (more…)

  6. Unguarded Shear Point on Force Tester Amputates Worker’s Finger

    Leave a Comment

    A worker was injured while testing gas springs similar to the type that hold the hatchback of an SUV open. The hazard that injured the worker was an unguarded shear point. The tester contained a mounting plate that was raised and lowered by a pneumatic cylinder.

    The pneumatic cylinder lowered the mounting plate while the worker’s fingers were in the hazardous, unguarded shear point. (more…)

  7. Case Study of an Injury Involving a Soil Mixer

    Leave a Comment

    In May, 2014, a plant farm worker was seriously injured when he fell into the hopper of an electrically powered soil mixer.  The mixer in question used a rotating steel ribbon powered by a 7-1/2 hp electric motor to mix batches of materials such as sand, mulch, wood shavings, fertilizers and other landscaping materials to create potting soil. At the top of the hopper sidewalls, within 6 inches of the ribbon, was a steel grate. (more…)

  8. A Case Study in a Coal Mine: What are a Machine Rebuilder’s Responsibilities?

    Leave a Comment

    In November of 2010, a miner was injured by a roof bolting machine (roof bolter) in an Alabama underground coal mine. The roof bolter in question had undergone a complete rebuild intended to return the machine to the original equipment manufacturer’s (OEM’s) specifications. Warren was hired to analyze both the design of the roof bolter and the actions of the rebuilder to determine if either contributed to the unfortunate coal miner’s serious injury. Background information on coal mining and roof bolters, as well as an analysis of the roof bolter and the actions of the rebuilder are included. (more…)

Type ofLoss

Not sure what you're looking for?
Browse All

Select Loss Category